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ABSTRACT

Repetitive simulations are used to generate frequency
distributions of maximum net productivity level estimates for the
northern fur seal population of St. Paul Islaﬁd, Alaska.
Definitive determination of the maximum net productivity level is
not possible due to uncertainty in life table parameters and
density-dependent change in those parameters. This uncertainty
is generally not accounted for in models used to study northern
fur seal population dynamics. The repetitive simulation approach
systematically varies simulation input parameters, runs a
separate simulation with each input parameter combination, and
validates the simulations on the basis of comparison with
historical observations. Results from validated simulations form
frequency distributions which provide a measure of confidence for
estimates of the maximum net productivity level. These frequency
distributions provide a basis for northern fur seal management
that is more appropriate than single-point estimates, in that
they reflect the current uncertainty regarding northern fur seal

life history and density-dependent population regulation.
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INTRODUCTION

This study estimates the maximum net productivity level
(MNPL) for the northern fur seal (Callorhinus ursinus) population
of St. Paul Island, Alaska. The U.S. Marine Mammal Protection
Act of 1972 (MMPA) established that marine mammal populations
should not be allowed to diminish below their optimum sustainable
population level. The U.S. National Marine Fisheries Service
(Gehringer 1976) interpreted the lower limit for the optimum
sustainable population level as the population’s MNPL. Gehringer
(1976) defined MNPL as the level at which there is "...the
greatest net annual increment in population numbers or biomass
resulting from additions to the population due to reproduction
and/or growth less losses due to natural mortality."

While the concept of MNPL is straightforward, its
quantitative determination for natural marine mammal populations
has proven to be difficult. Gerrodette and DeMaster (1990)
reviewed methods for determining the status of a population
relative to its MNPL by dividing them into those methods
requiring estimation of the MNPL and those that do not. The
methods reported here involve estimation of MNPL as an absolute
abundance and as a fraction of the environmental carrying
capacity (K). The simple (nongeneralized) logistic growth
equation predicts that MNPL occurs when population abundance is
0.5K, but there is both theoretical and empirical evidence that
MNPL occurs at greater than 0.5K for large mammals (Gilpin et al.

1976, Eberhardt and Siniff 1977, and Fowler 1981). TFowler (1984,
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1988) suggested that MNPL for Pribilof Island fur seal
populations may be on the order of 0.6K, and as they are
currently thought to be below this level, they have been
designated as "depleted" under the MMPA. However, the precision
of Fowler’s (1984, 1988) estimate is not known, and there is
uncertainty regarding the absolute abundance at which MNPL occurs
and how to measure that abundance.

This paper considers three approaches to estimate MNPL. The
first approach is based on analytical stock-recruitment models
that were fit to fur seal data and then solved to provide
estimates of MNPL. The second approach is based on numerical
models of northern fur seal population dynamics that had been
developed to simulate the recent history of the northern fur seal
(Fig. 1). These simulations were reproduced and then examined
for numerical estimates of MNPL. The first two approaches are
described briefly to illustrate the nature of problems associated
with their use to predict MNPL. The third approach is based on
the numerical method of Smith and Polacheck (1984). This
approach uses repetitive simulations to generate distributions of
MNPL and MNPL/K estimates where the distributions are functions
of the uncertainty in model input (i.e., input parameters and
regulating mechanisms) and validation criteria (i.e., historical
observations of the population used to validate model results).
The distributions form a "asis for judging the confidence that

can be placed in any sinc e estimate of MNPL.
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ANALYTICAL APPROACH

Analytical stock-recruitment models have been used in the
past to estimate the northern fur seal pup population size that
results in the maximum return of juvenile males for the
commercial harvest (Chapman 1961, 1964, 1973; Nagasaki 1961;
Ichihara 1972; and Eberhardt 1981). There are three main
difficulties associated with this approach for MNPL estimation.

The first difficulty results from the nature of northern fur
seal data to which stock-recruitment functions can be fit. The
data available are for number of pups born (stock) and number of
animals surviving to age 2 or 3 (recruits); that is, these data
represent only a segment of the pobulation. But MNPL is a
measure of the entire population determined under natural
conditions without being confounded by age- or sex-selective
harvests or other forms of human influence, either direct or
indirect. Hence, the use of this stock-recruitment approach
assumes that maximum net juvenile recruitment coincides with
maximum net productivity of the whole population (Fig. 2). Do
they coincide? Berkson and DeMaster (1985) have shown that the
use of only a segment of a population can result in a biased
assessment of whole-population trends, depending on the nature
and timing of density-dependent regulation of the population.
Thus, this stock-recruitment approach to estimating MNPL may
include inherent bias.

The second difficulty associated with this analytical stock-

recruitment approach is the reliability of the data. Initial



4
estimates of the number of pups born during the 1950s were based
on animals tagged as pups and recovered as juveniles in the
commercial harvest. However, these estimates were subsequently
considered spurious (Chapman 1964, 1973), perhaps due to tag-
induced mortality (but see also Smith and Polacheck 1984). The
various published survival estimates for juvenile males (Fig. 3;
Chapman 1973, Lander 1979, Smith and Polacheck 1984, and Trites
1989) are evidence that there remains substantial disagreement
about the survival data. In addition, the uncertainty in number
of pups born (the independent variable in these stock-recruitment
functions) results in the errors-in-variables problem, which is
not taken into account by standara regression techniques. As
indicated by Walters and Ludwig (1981), "Errors in measuring
stocks can have a profound effect on the appearance of stock-
recruitment relationships."

A third difficulty involvés the question of which stock-
recruitment function to use. These stock-recruitment functions
contain inherent mathematical bias. For example, it is well
known that maximum net recruitment predicted by the familiar
Beverton and Holt function (Beverton and Holt 1957) is
mathematically constrained to less than 0.5K. Hence, this
function, and others with similar constraints, are too inflexible
to accurately predict MNPL. Paulik (1973) suggested "asymptotic
exponential regression" to make these models more flexible and
thereby reduce their inherent bias. Other methods considered in

this study involve the addition of a parameter to the models to
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change the shape parameter to a linear or an exponential function
of stock size. Chapman (1973) assessed this problem of model
selection and concluded, "It would appear therefore that if we
pick a particular stock-recruit model...to fit to real data, we
are merely picking a convenient empirical curve which may have,
but probably does not have, biological meaning." The selection
of an appropriate model becomes critical if there is substantial
variation in maximum net productivity levels predicted by the set
of available stock-recruitment models.

To illustrate the problem of bias inherent in the models and
the significance of model selection, twelve stock-recruitment
functions were fit to female juvenile survival data (Fig. 4).
Female juvenile survival was estimated using Chapman’s (1973)
data for male juvenile survival multiplied by his lambda factor
of 1.1. Table 1 presents fitted parameter estimates, as well as
resulting estimates of MNPL, K, and MNPL/K. The unmodified
versions of the Robbins-Chapman (Robbins 1945, Chapman 1973),
Ricker (1954), and Beverton and Holt (1957) models all predict
MNPL/K to be less than 0.5. MNPL/K predictions from the modified
versions of these models are all greater than 0.5, illustrating a
reduction in bias resulting from the addition of a third
parameter. However, the addition of a third parameter involves a
trade-off; parameters for the modified versions of these models
are estimated with less certainty, that is larger standard
errors. Thus, while the addition of the third parameter
appears to reduce bias in resulting MNPL estimates, it also

results in greater variance about the parameter estimates



Table 1.--Fitted stock-recruitment curves, including modification of
the Robbins-Chapman (Robbins 1945, Chapman 1973), Ricker
(1954), and Beverton and Holt (1957) models. MNPL and K are
given in thousands of pups born. The data fitted are adapted
from Chapman (1973, p. 331, Table 112). Models followed by an
asterisk (*) incorporate the additional parameter as suggested
by Paulik (1973). Values under parameter estimates are
coefficients of variation. R is recruits; S is stock; A, B,
and C are parameters; "%" is (MNPL/K)*100; and Var is the
variance about the regression or the sum of squared errors
divided by the degrees of freedom. The designation "E" is

base 10.
Model (R=) A B C MNPL K % Var
Robbinsg-Chapman
105.9 2.375E-3 = 206 452 46 317
A(l-e75B9) 0.578 0.933
72.28 1.422E-3 1.180E-5 280 445 63 330
A(l-e-B+cS)Sy 0,220 2.743 1.931
w 69.72 1.870E-3 3.576E-3 299 445 67 327
A(l-e~85¢7) 0.148 1.030 1.319
72.91 1.210E-4 1.649 277 445 62 330
A(1-e785% x 0.276 5.760 0.685
Ricker
0.2484 1.061E-3 . 211 450 47 316
ASe~Bs 0.322 0.772 '

0.2265 4,529E-4 9.059E-7 234 448 52 333
ASe " (B+C9)S 1.047 14.24 10.44

0.2269 3.610E-4 2.063E-3 242 436 56 331
ASe-Bse 0.698 7.648 6.549

Beverton and Holt

1 5.769E-3 3.856 - 198 456 43 318
A+—B/S 0.780 0.444



Table 1.-- Continued.
Model (R=) A B C MNPL K % Var
1 0.01329 8.662 -6.11E-3 277 445 62 331
A+ (Be“/3) 0.297 1.680 1.491
1 * 0.01160 387.5 *1.932 262 446 59 332
A+B/S°¢ 0.601 - 10.12 1.033
Richards (as suggested by Eberhardt 1981)
AS[(B/S)Y-1] 10.68 466.8 60.01 422 452 93 286
1-C 0.089% 0.014 0.799
Generalized Allen (1972, from Chapman 1981)
ASB(K-8)€ 6.127E-3 1.448 0.1741 365 464 79 286

3.450 0.347 0.593

and the resulting calculated MNPL. Confidence in the MNPL
estimate is reduced. Figure 4 illustrates the fitted stock-
recruitment curves. With the exception of the Richards curve
(Richards 1959; bottom row, middle) and the generalized Allen
(1972) curve from Chapman (1981; bottom row, right), the curves
are remarkably similar in shape. It is important to note,
hdwever, that the predicted values of MNPL are markedly
different, ranging from a population with 198,000 pups born to a
population with 422,000 pups born. While the Richards curve and
the generalized Allen curve give the best statistical fits (least
variation about the regression), both of these curves indicate a

very sharp decline in survival of females to age 3 as the
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population approaches K. The sharpness of these declines is
questionable and suggests an instability at large population
abundance that is not consistent with the characterization of
this species as being "K-selected."

Thus, it appears that thisnstock-recruitment approach is
confounded by a number of sources of potential bias including
1) use of a segment of the population to index whole-population
trends, 2) uncertainty in the data to which the stock-recruitment
functions are fit, and 3) mathematical bias inherent in many of
the functions. Reduction of the mathematical bias by the
addition of a third parameter involves a trade-off with the
degree of confidence in the resulting parameter estimates, and
hence, the MNPL estimates calculated from the parameters. And
finally, very similarly shaped stock-recruitment curves predict
markedly different values of MNPL, but there is no apparent basis
for choosing one stock-recruitment function over another.

These problems with the analytical approach clearly indicate
that other methods of estimating MNPL are desirable. A second
means of MNPL estimation for this northern fur seal population is
with numerical models of fur seal population dynamics. This

approach is considered in the following section.

NUMERICAL APPROACH

A variety of age-structured numerical models have been
developed to simulate recent trends in northern fur seal

abundance and to study the effects of various extrinsic
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influences (e.g., harvests or fisheries interactions) on their
populations. In the second stage of this work, models by Smith
(1973), Eberhardt (1981, 1990), Swartzman (1984), and French and
Reed (1989) were examined and reproduced to generate numerical
estimates of MNPL. However, the results are not presented here
because they reflect the same kinds of problems and uncertainty
inherent in the stock-recruitment approach.

The original development of these numerical models involved
choosing a life table of vital parameters and a mechanism of
density-dependent regulation, then running a simulation and
comparing it to historical observations (validation criteria),
and finally, adjusting one or more elements of the model until
the comparison was satisfactory, thus providing a basis for
confidence in the model. The problems with this approach to MNPL
estimation stem from uncertainty in the information required by
the models. Uncertainty in model input (i.e., life table
parameters and mechanism(s) of density dependence) suggests that
there may be many apparently realistic combinations of parameters
and density dependence which, when entered into a model, result
in population simulations that are consistent with historical
observations (i.e., satisfy the validation criteria). But the
simulation patterns also indicate substantially different
estimates of MNPL. The results from each of the above numerical
models are based on a single combination of input information and
therefore cannot reflect the uncertainty with which life table

parameters and density dependence are known.
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Uncertainty in life table parameters for the northern fur
seal is indicated by the number of published survival and
fecundity schedules (Kenyon et al. 1954, Chapman 1964, Eberhardt
1981, Goodman 1981, Lander 1981, Smith and Polacheck 1981, York
and Hartley 1981, and Barlow and Boveng 1991). With the
exception of Kenyon et al. (1954), survival and fecundity
schedules have been developed primarily from data gathered in the
extensive pelagic collection taken from 1958 to 1974 by Canadian
and U.S. scientists. But these schedules differ with respect to
assumptions of population equilibrium and methods of estimating
survival of young females, which were underrepresented in the
pelagic collection. Figure 5 illustrates the variability among
four equilibrium survival schedules proposed for females.

Similarly, there is uncertainty about which of these
parameters vary in response to changes in population abundance
and the nature of that density-dependent change. The four models
reproduced in this part of the study utilized different forms of
density dependence, but applied that density dependence to
juvenile survival only (Fig. 6); fecundity rates and survival
rates of older animals were held constant. Yet, Smith and
Polacheck (1981) argued that changes in juvenile survival alone
could not account for the 8% change in population growth rate
that occurred between 1912 and the 1950s. They point out that if
two or more density-related mechanisms were responsible for the
pattern of growth s< 1, then change in any one mechanism may have

been small and therefore difficult to detect. Small changes in
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adult female survival can have large regulatory effects (e.qg.,
Eberhardt and Siniff 1977). But adult female survival is very
difficult to measure, and previous estimates are imprecise
relative to the degree of change necessary to substantially
modify population growth. While there may not yet be clear
evidence for density-related changes in fecundity and survival of
fully mature adult females, the lack of evidence may reflect an
inability to detect those changes when they occur. Density-
dependent fecundity and adult survival should be considered as
possible regulatory mechanisms in models of northern fur seal
population dynamics.

The first two approaches (analytical models and numerical
models with a selected parameter set) were described to
illustrate the nature of the problems with the estimation of MNPL
for northern fur seals. These approaches require data of
uncertain accuracy and precision and utilize either stock-
recruitment models or models of density dependence, both of which
vary in their theoretical derivations and in their predictive
properties. Consequently, it is difficult to judge the level of

confidence that can be placed in the resulting estimates of MNPL.

REPETITIVE SIMULATIONS

To circumvent the above described problems, this study
extended the modeling approach of Smith and Polacheck (1984).
Their approach began by estimating the range of possible values

for each of their model input parameters. The combination of all
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the parameters constituted a "parameter space," that they
systematically partitioned to form a large number of parameter
combinations. Smith and Polacheck (1984) used their parameter
combinations in separate simulations to study the effects of age
structure and density dependence on the harvesting of northern
fur seal females. In the present study, separate simulations
using different parameter combinations were run to estimate
possible values of MNPL. The results from the subset of
simulations .satisfying predetermined validation criteria created
a distribution of MNPL estimates, providing a measure of

confidence in individual estimates.

The Model

The model simulated the northern fur seals of St. Paul
Island. The model population consisted of individuals of
specified age and sex; males were included because MNPL applies
to the entire population. Females were limited to a single pup
each year, and the sex ratio of pups born was assumed to be 1:1.
The model made discrete, yearly time steps from 1912 to 2000,
with thé annual cycle as depicted in Figure 7. The starting
population was scaled to a stable age distribution producing
70,000 pups in 1912 (Kenyon et al. 1954). The commercial kill of
ju ile males from I918 to 1984 was not included in the model;
male. were subjected to natural sources of mortality only. The
female kill from 1955 to 1968 was included, and females were

removed by age according to records from the kill (Smith and
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Polacheck 1984). The removal of females during any simulation
occurred after MNPL was determined and was an important aspect of
model validation. The pups of those females must have perished
due to starvation; they were also removed from the model

population (York and Hartley 1981).

Density Dependence

Life table values were divided into five parameter groups:
adult (age 3 and older) female survival, fecundity (defined here
as female births per female per year), juvenile (less than 3
years old) female survival, juveniie (less than 3 years o0ld) male
survival, and older (age 3 and above) male survival. In any
simulation, adult female survival, fecundity, and juvenile female
survival were varied independently in a density-dependent manner
over some predetermined range or scope for density-dependent
change. The nature of density-dependent change for adult female
survival, juvenile female survival, and fecundity was determined

by separate equations of the form (Allen 1976)

X (Ny) X+ (X - X (1 - (N/NO)P), (1)

where X, (N))

the value of parameter X for age i, year t, as
a function of the number of females age 1 and

older at the beginning of year t (N,);
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X = the value of the parameter X, at population
equilibrium;

X; = the realized maximum value of parameter X,

N*. = the number of females age one and older at

population equilibrium; and
Z = a positive constant (shape parameter),
specific to adult survival, fecundity, or

juvenile survival.

The term (X;'-X;’) in Equation (1) is the difference between the
"realized maximum value" for a parameter and its value when the
population is at equilibrium; hence, it is the scope for density-
dependent change in that parameter. For any given simulation,
the realized maximum values of adult female survival (S;’) and

fecundity (F,’) were determined by

[42]
]

: M (1.0 - S8’) + S, and (2)

|
I

A M (0.5 - F’) + F/, (3)

where M, and M; are the proportion of the maximum possible scope
for density-dependent change (Smith and Polacheck 1984; Fig. 8).
Note that M, and M; apply simultaneously to all adult female
survival values and all fecundity values, respectively. While it
is o. .logically possible that juvenile survival could reach 1.0

1

yr', it is clear that this value is never reached, and in this

study "biologically possible" maximum values were arbitrarily
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constrained for female pups to 0.8 yr!, for l-year-old females to
0.9 yr!, and for 2-year-old females to 1.0 yr'. Hence, realized
maximum survival values for female pups, 1l-year-olds, and 2-year-

olds were determined by

Se' =M (0.8 - S;) + S, (4a)
S =M (0.9 - 8°) + 8, and (4b)
S, =M (1.0 - 8,) + 8, (4c)

M determined the realized maximum survival for all 3 age groups
simultaneously in any given simulation. The use of 0.8, 0.9, and
1.0 yr! as biologically possible maximum values restricts female
survival to age 3 and to no more than 0.72, which is consistent
with the médel of Smith (1973) and with the life table used by
Goodman (1981) and Gerrodette et al. (1985).

The third term of the regulating function, (1 - N/N°)Z,
determines the extent of parameter change between the realized
maximum value and the equilibrium value as a function of the
ratio of number of females age 1 and older at the beginning of
year t (N,) to the number of females age 1 and older when the
population is at equili?rium (N') . The value of Z, the shape
parameter, controls the nonlinearity of the density-dependent
regulating function (Equation 1). When Z is 1.0, the function is
linear. As Z is increased above 1.0, the function becomes
nonlinear and concave downward, and the nonlinearity increases as

Z becomes larger (Fig. 9).
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Survival for juvenile males was determined as a function of
female juvenile survival. Chapman (1961, 1964, 1573) suggested
survival of males and females from birth to age 3 can be related

with the function

Sosm = Sose / N, (5)

where Sy, and S,;¢ are survival from birth to age 3 for males and
females, respectively, and A is a constant equal to 1.1.
Determined in this manner, survival of juveniles males was
density-dependent in the same manner as survival of juvenile
females. Survival of males older than age 3 was held constant in

all simulations.

Parameter Values
Each simulation used a different combination of model input
parameters. Parameter descriptions, ranges, and increments are
listed in Table 2. Equilibrium life table values are listed in

Table 3.

Validation Criteria
Five validation criteria were used to determine if the
results of any given simulation were consistent with historical
observations (Fig. 10). The first was the growth rate achieved
during the interval 1912-24. Historical records suggest that the

number of pups born annually during this period was growing
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Table 2.--Input parameter descriptions, ranges, and increments as
used in the repetitive simulations. Note that the
parameter M, was not allowed to exceed M; in any
simulation. These parameters determine the scope for
density-dependent change as a portion of the maximum
possible change in adult female survival and fecundity,
respectively. Given this constraint, the partitioning of
input parameters as listed results in 8,468,064 possible
parameter combinations, each of which was tested in a
separate simulation.

Parameter Description Range Increment

P Total number of pups born with 350-500,000 10,000
the population at equilibrium and
in stable age distribution

M, Determines realized maximum adult 0.0 - 1.0 0.1
female survival as a portion of
maximum possible scope for change

M; Determines realized maximum 0.0 - 1.0 0.1
fecundity as-a portion of maximum
possible scope for change

M Determines realized juvenile 0.0 - 1.0 0.1
survival as a portion of maximum
possible scope for change

z, Exponent determining nonlinearity 1.0 - 5.0 0.5
of Allen function regulating
adult female survival

Z; Exponent determining nonlinearity 1.0 - 5.0 0.5
of Allen function regulating
fecundity

Z; Exponent determining nonlinearity 1.0 - 5.0 0.5

of Allen function regulating
juvenile survival

at the rate of about 0.08 yr' (Kenyon et al. 1954). Pups were
enumerated in those years, and while the counts are generally
accepted, the possible error may be substantial. Gerrodette et

al. (1985) simulated the growth of a northern fur seal population
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Table 3.--Equilibrium life table values used in the simulations.
Female survival rates taken from Barlow and Boveng
(1991), pregnancy rates modified from Smith and Polacheck
(1984), and male survival rates modified from Lander

(1981).
Females Males
Annual Survival Annual Annual Survival

Survival from Birth Survival from
Rate Age 0 Rate Rate Age O

Age Dx 1 m, <N 1
0 0.539 1.000 0.000 0.522 1.000
1 0.702 0.539 0.000 0.680 0.522
2 0.814 0.378 0.000 0.789 0.355
3 0.885 0.308 0.010 0.800 0.280
4 0.928 0.273 0.015 0.800 0.224
5 0.951 0.253 0.220 0.800 0.179
6 0.964 0.241 0.395 0.800 0.143
7 0.969 0.232 0.395 0.800 0.115
8 0.969 0.225 0.425 0.800 0.0?2
9 0.964 0.218 0.460 0.760 0.073
10 0.956 0.210 0.445 0.730 0.056
11 0.943 0.201 0.450 0.700 0.041
12 0.923 0.189 0.440 0.650 0.029
13 0.894 0.175 0.430 0.590 0.018
14 0.854 0.156 0.420 0.540 0.011
15 0.799 0.133 0.410 0.430 0.006
16 0.726 0.107 0.390 0.000 0.003
17 0.631 0.077 0.350 0.000 0.000
i8 0.515 0.049 0.305 0.000 0.000
19 0.384 n.025 0.264 0.000 0.000
20 0.000 J. .. 0.025 0.000 0.000




19
under conditions similar to those in the 1910s and determined the
99% confidence interval for the growth rate to fall between 0.048
yr! and 0.115 yr!. 1In this study, growth rate values of 0.05 yr’
and 0.11 yr' (which corresponds to a counting error of
approximately 15%) were used as lower and upper limits to the
annual growth rate between 1912 and 1924. Simulations with
annual growth rates outside this range were not continued.

The second criterion was the number of pups born annually in
the interval 1940-55. Smith and Polacheck (1984) estimated
the lower limit of pup population size during that period as
350,000. TIf the maximum pup number in the model during this
period did not reach 350,000, the simulation was discontinued.

The third criterion was based on the generally accepted idea
that the population was near equilibrium by the late 1940s or
early 1950s. 1If growth rate for the population did not decline
to less than 0.015 yr!' (arbitrarily chosen) during the interval
1945-55, the simulation was stopped.

The fourth criterion was the number of pups born annually in
the interval 1962-70. The shear-sample (mark-recapture)
technique for estimating pup numbers (Chapman and Johnson 1968)
was used during this period and the counts are considered
relatively reliable. These pup estimates have been used to
validate models in earlier studies (Smith 1973, Eberhardt 1981
and 1990, Smith and Polacheck 1984, French and Reed 1989, and
Trites and Larkin 1989). The maximum number of pups estimated

for this period was about 298,000 (Briggs and Fowler 1984, Smith
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and Polacheck 1984). Allowing for 15% error in this estimate,
the fourth criterion stopped the simulation if the minimum count
during this period 1962-70 was greater than 342,700.

The fifth criterion was the presence/absence of growing
oscillations in total population abundance or other abnormal
behavior. If a simulation passed the other criteria, it was
allowed to run until the year 2000. The simulation was
considered unacceptable if 1) prior to the female harvest 1956-68
the total population growth rate became negative and the
magnitude of the decline was greater than 0.1 yr!; 2) between
1970 and 2000 the total population growth rate was positive with
a magnitude greater than 0.2 yr! or negative with a magnitude
greater than 0.1 yr*; 3) there were at least three oscillatory
cycles between 1970 and 2000, and the difference between the
third peak and third trough was greater than the difference
between the second peak and second trough; or 4) between 1970 and
2000 the total population dropped to less than the minimum

population size recorded during the female harvest.

Measurements and Sensitivity
Five population measures, including MNPL, K, the number of
pups born at MNPL and K, and the ratio MNPL/K were recorded for
each simulation that passed the validation criteria. MNPL was
determined numerically by locating the total population size
resulting in the maximum net annual increment in population

growth; the number of pups born at that population size was also
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recorded. The number of pups born at equilibrium was a
simulation parameter that was used with the equilibrium life
table to calculate the population size at K; K was not determined
numerically. The abundance of pups was recorded for each
successful simulation to compare with observed pup estimates,
which are the most reliable measures of the natural population.

To select those simulations that were most consistent with
historical records, an error was calculated for each successful
simulation. . The error was based on observed and modeled pup
numbers from 1962 to 1970. Assuming that the standard error in
pup estimates from this period was proportional to the size of

the pup population, the error was calculated as

1970 ‘
error = L [In(No,m) - 1n(Ng,,) 12, (6)
t=1962

where ln is the natural logarithm, Ny, is the year-specific pup
production in the model, and N,,, is the observed annual pup
production reported in Briggs and Fowler (1984). Error
calculations do not extend beyond 1970 as there is evidence that
population trends, including pup production, were substantially
confounded after 1970 by injuries and death due to entanglement
in marine debris (Fowler 1985). Frequency distributions were
reconstructed using successful simulations weighted inversely by
their error. Additional distributions were constructed using

only those simulations-with an error in the lower 10% of the
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error range. Finally, to test the sensitivity of the
distributions resulting from this approach, the simulations were
subjected to modified validation criteria and to modifications of

various model assumptions.

RESULTS

Simulations With Original Validation Criteria

Of the 8,468,064 simulations attempted, 736,629 (8.7%) passed
the originai validation criteria. Estimates of MNPL, pups born
at MNPL, K, pups born at K, and the ratio MNPL/K from these
successful simulations were used to construct the frequency
distributions shown in Figure 11. Maximum net productivity level
in these simulations ranged from a total abundance of about 0.8
million to 1.2 million, with a mode at 0.98 million (Fig. 11A).
Corresponding estimates of pups born at MNPL (Fig. 11B) ranged
from about 185,000 to just over 300,000 with a mode at 243,000
pups born. Estimates of the ratio MNPL/K (Fig. 11C) ranged
approximately from 0.5 to less than 0.8 with a mode at 0.65.
Estimates of the total population size at K ranged from 1.43
million to about 1.8 million with a mode at 1.47 million,
corresponding to the production of 350,000 to 440,000 pups with a
mode at 360,000. Estimates of MNPL, pups born at MNPL, and
MNPL/K appeared to be normally distributed. Left truncation of
the distributi .. for estimates of K and pups born at K (Fig. 11D)
resulted from the use of pups born at K as an input parameter for

the model with an imposed lower limit of 350,000 pups. Recall
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that estimates of total population size at K were calculated from
the number of pups born at K and the equilibrium life table,

hence, the identical distributions.

Simulations With Modified Validation Criteria

Narrowing the acceptable range for the annual growth rate
between 1912 and 1924 from 0.05-0.11 to 0.06-0.10 resulted in
fewer simulations being accepted (6.2%; n = 524,362). Reductions
in the distributions appeared to be proportional (Fig. 12), with
ranges and modes essentially unchanged. The largest change was a
shift in the modal value for pups born at MNPL from 243,000 to
237,000 (Fig. 12B). |

Decreasing the upper limit for minimum growth rate during the
period 1940 to 1955 from 0.015 yr' to 0.01 yr! had a negligible
effect on the original distributions of population measures (8.6%
accepted; n = 731,633; results not shown).

Increasing the lower limit for the maximum number of pups
born annually between 1945 and 1955 from 350,000 to 381,000
resulted in a substantial reduction in the number of successful
simulations (4.1%; n = 347,208). 1In addition, there was a shift
of the MNPL distribution and the combined distribution for K and
pups born at K to larger values (Fig. 13). Distributions of pups
born at MNPL and MNPL/K were less affected by modification of

this validation criterion in that the mode changed very little.
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Additional Results

A test of the sensitivity of this modeling approach to the
method of partitioning the parameter space was conducted by
changing the increment size for M, and M; from 0.1 to 0.2. That
is, these parameters were allowed to assume only six values (0.0,
0.2, 0.4...1.0) instead of eleven (0.0, 0.1, 0.2...1.0). With
this adjusted partitioning, 2.6% of the simulations were
successful (n = 220,034). The disproportionate decline in number
of cases meeting validation criteria is discussed below.
However, locations of the distributions appeared to be
essentially unchanged (Fig. 14).

Weighting of population measurés by the inverse of the error
in pup estimates during the interval 1962-70 resulted in only
slight shifts in the distributions (Fig. 15). The largest modal
shift was in the number of pups born at MNPL, which declined to
234,000 from 243,000. However, when only those simulations with
errors in the lowest 10% of the error range were considered (n =
6,279), there were large downward shifts in all distributions,
particularly the number of pups born at MNPL
(Fig. 16).

Included in Figure 17 are the age-specific equilibrium
survival rates for females from Barlow and Boveng (1991). When
these equilibrium survival values were adjusted to be more
consistent with other published equilibrium survival schedules
(Figs. 5 and 17), substantial changes occurred in number of

successful simulations (20.0%; n = 1,697,491) and distributions
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of the population measures (Fig. 18). The modal MNPL estimate
increased to 1.04 million and there was a clear shift in this
distribution to higher values. Number of pups born at MNPL also
increased to higher values with a mode at 261,000 pups born. The
distribution of MNPL/K shifted to slightly lower values, but the
mode was essentially unchanged at 0.64. The combined
distribution for K and the number of pups born at K shifted
upward with the mode for the total population at approximately
1.6 million, producing from 360,000 to 370,000 pups.

Reduction of biologically possible maximum values for adult
survival and fecundity from 1.0 yr! and 0.5 yr! to 0.98 yr! and
0.49 yr!, respectively, resulted in fewer successful simulations
(5.9%; n = 499,887; results not shown), but distribution
locations were essentially unchanged. However, when maximum
change possible in adult survival or fecundity was limited to no
more than 10% of equilibrium value (Fig. 17), then 12.1% of the
attempted simulations were successful (n = 1,026,284;

Fig. 19). Under this constraint, distributions of MNPL and
MNPL/K shifted to larger values, with modal values of 1.04
million animals and 66%, respectively. The distribution of pups
born at MNPL shifted to lower Vaiues, with a modal value of
237,000 pups. Population size at K and number of pups born at K
were much more evenly distributed throughout the approximate
range of 1.43-1.71 million animals with 350,000 to 420,000 pups
born. While the modal value did not change, there was a clear

shift toward larger values.
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For each successful simulation corresponding to the original
validation criteria (Fig. 10), values of M,, M, and M were
recorded. Distributions of M; and M, were strongly skewed to
higher values, while the distribution of M, values was strongly
skewed to lower values (Fig. 20). Recall from Table 2, howgver,
that the value of M, in any given simulation was never allowed to
exceed M;; hence, relatively fewer simulations were run with
larger values of M,.

Values of Z,, Z, and Z; were also recorded for each successful
simulation, and the effect of nonlinearity on the ratio MNPL/K is

presented in Figure 21 for several values of M, M, and M.

DISCUSSION

This repetitive simulation approach is designed to account
for the fundamental problem of uncertainty in northern fur seal
life history parameters and mechanisms of density-dependent
regulation. Clearly, a consequence of this uncertainty is that
satisfaction of the validation criteria is a basis for only
limited confidence in any given simulation. Repetitive
simulations illustrate that many combinations of parameters and
regulating mechanisms lead to satisfaction of the validation
criteria, even though these combinations represent only a small
portion of the parameter space. Frequency distributions of

results from the complete set of successful simulations provide a



27
basis for more confidently identifying critical reference
population levels.

The main components of this approach include: 1) validation
criteria, 2) equilibrium life table parameters and scope for
density-dependent change in those parameters, 3) functions
representing population regulation, and 4) a method of
partitioning the parameter space to create parameter combinations
for testing in separate simulations. Each of these components is

discussed below.

Validation Criteria

Results from this repetitive simulation approach appear to be
robust to changes in the allowable annual growth rates in the
intervals 1912-24 and 1945-55. Results were more sensitive to
the validation criterion based on number of pups born annually in
the interval 1940-55. As mentioned earlier, there is a great
deal of uncertainty about true pup production during this period.
York (1985) suggested the number of pups born in 1940 on St. Paul
Island may have been as high as 469,315. Fortunately, the
frequency distributions for the number of pups born at MNPL and
the ratio MNPL/K appear to be less sensitive to this criterion
than are the distributions for population size at MNPL and K.

The fourth validation criterion was the number of pups born
annually during the interval 1962-70. Because estimates of pup
production during this period are considered relatively reliable,

they were not used to test the sensitivity of the distributions
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of the five population measures. Rather, as described earlier,
they were used to weight successful simulations on the basis of
the error between simulated and observed numbers. The weighting
of successful simulations did not alter the distributions
substantially, unless only simulations with an error in the
lowest 10% of the error range were considered. These "best"
simulations were most consistent with historical observations,
and suggest that all five population measures are overestimated
by the original results (Fig. 16). As pup production is the best
index of this population, the discrepancy in predictions of
number of pups born at MNPL is particularly disturbing.

The fifth validation criterion was intended to reject
simulations exhibiting behavior assumed to be unrealistic for
this population. One of the most difficult aspects of this
approach involved the detection and rejection of "unnatural"
oscillations in population abundance. For example, trial
simulations using the number of pups as the measure of density
resulted in 2.2% of the simulations passing the validation
criteria, far fewer than when the number of females age 1 and
older was used. Presumably, the difference was due to unnatural
oscillations from fluctuating pup numbers and the effects of that
fluctuation on fecundity and adult survival rates as calculated
annually in the model. When millions of simulations are run, the
behav >r of all individual simulations can not be visually

monitored. While it was not done in this study, a random sample
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of rejected simulations may be useful in characterizing unnatural

behavior in the simulated population.

Life Table Parameters and Scope for Density-Dependent Change

As illustrated in Figure 5, there is substantial uncerta%nty
in equilibrium life table parameters for the northern fur seal.
This life table determines the age structure of the population at
equilibrium, and as used here, also determines the scope for
density-dependent change in parameters. The equilibrium survival
schedule of Barlow and Boveng (1991) was used in this study
because it includes survival rate estimates for all ages, and
because it changes with age in a smooth rather than abrupt,
manner. Their survival schedule combines relatively low juvenile
survival with high adult survival, allowing greater scope for
density-dependent change at younger ages. As indicated in
Figure 18, the use of a different life table resulted in a
substantial difference in the number of successful simulations,
as well as in estimates of total and pup population sizes at MNPL
and K. Figure 20 indicates that density-dependent change in
adult survival is likely to be small, whereas similar change in
fecundity and juvenile survival is likely to be large. As Smith
and Polacheck (1981) pointed out, we are unable to detect small
changes in adult survival that may have significant influence on
population regulation. The need to refine estimates of northern
fur seal life table values is emphasized both by the sensitivity

of results obtained here and by the present inability to detect
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changes in life table values that may have significant regulatory
effects. This has proven to be difficult due to the lack of
information on younger age classes and the required assumption of

population equilibrium.

Regulatory Function

A single functional form (Allen 1976) was used in this study
to regulate adult female survival, fecundity, and juvenile
survival. Varying the scope for density-dependent change and the
exponent (Z) controlling the degree of nonlinearity allows this
functional form to exhibit a wide range of possible behaviors
(Fig. 9). 1Its relative continuity over the tested values of Z
was a useful property for compiling frequency distributions.
Still, this form, as used here, may have been too restrictive and
additional functions should be tested. For example, density-
dependent parameter change corresponding to a Z-value of 5 is not
as nonlinear as the function of Eberhardt (1981) for female
juvenile survival. BAn altogether different function might not
easily be modified to generate frequency distributions, but
perhaps could be compared with results for a particular value
of Z.

The effects of nonlinearity in this function on the ratio
MNPL/K are seen in Figure 21. As the exponent Z becomes larger,
there is a general increase in the ratio MNPL/K. However, these
..iCreases are .ot large, and it appears that this ratio is

strongly conserved or robust in this modeling approach. In
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general, the effect of nonlinearity should increase as the scope
for density-dependent change becomes larger. This appears to be
the case, although the differences are not large and are
difficult to evaluate when there are few successful simulations
(e.g., adult survival with large scope for density-dependent
change) . With respect to fecundity, there appears to be a trade
off between the degree of nonlinearity and the number of
successful simulations. That is, when Z; is large, there are
fewer acceptable simulations. But this does not appear to be the
case for adult or juvenile survival. It is surprising that
MNPL/K appears to be least affected by changing nonlinearity in
adult survival, again suggesting that this ratio is highly
conserved.

In addition to the exponent Z, another important element of
this functional form is the variable used as the measure of
density. The true mechanism(s) of density-dependent change in
northern fur seal life table parameters has not been determined.
Hence, it is difficult to know what portion of the population
best serves as an index of population density. For example, if
food is the limiting factor, then it is important to know how
food availability limits population growth and what age and sex
groups are competing for the same limiting food resource. Again,
this information is not currently available. In this study, the
number of females age 1 and older was used as the measure of
density, but it is reasonable to suspect that these results might

be altered with some other measure.
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Partitioning of the Parameter Space

The presentation of results in Figures 11-14, 18, and 19
assumed that each simulation outcome was equally likely. This
implies that the probability distributions for the parameters in
the life table and regulating mechanisms were also equally
likely, which seems unrealistic. However, because probability
distributions were not known for the model parameters, and the
nature of regulation was uncertain, the assumption of uniform or
equal probability for all simulations was used as a first
approximation.

It was also assumed that true parameter values and regulating
mechanisms were encompassed in the ranges tested, and that the
method of partitioning the parameter space did not distort the
resulting frequency distributions. The possibility that the
method of partitioning may bias the resulting frequency
distributions should be more fully investigated. An initial test
of the effect of partitioning was conducted by reducing the
number of values that M, and M; could assume (Fig. 14). If the
values tested for these parameters were equally likely, then the
corresponding reduction in the number of successful simulations
was expected to be 45%. The observed reduction was 70%. This
was consistent with the results in Figures 20 and 21, which also
suggested the tested values of M, and Merre not equally likely.

The partitioning of the parameter space is important for

another reason. A large number of input parameters can lead to a
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large number of parameter combinations (8,468,064 in this study);
running a separate simulation with each parameter combination

consumes extensive computing resources.

Concluding Remarks

This investigation of MNPL attempted to account for the
uncertainty in life history parameters and density-dependent
regulation of the northern fur seal population of St. Paul
Island, Alaska. While single stock-recruitment forms and single
numerical simulations can provide single estimates of MNPL, they
provide little indication of the confidence that can be placed in
those estimates and fail to accouﬁt for the fundamental
uncertainty of the required data and assumptions. MNPL for
marine mammal populations will never be known with complete
certainty. The issue is not simply how to find a best estimate,
but also how to assess the probability and implications of
alternative estimates.

The strategy used in this study is, in effect, an extension
of sensitivity testing. Model sensitivity is frequently
evaluated simply by adjusting single pérameters (dimensions)
around their mean values to explore a parameter space in the
neighborhood of a most likely solution. The systematic approach
used here explores the entire parameter space, and“Ehereby also
considers the interaction of the different parameters.

This approach requires extensive data and computing

resources. Data are always insufficient, which emphasizes the



34
need to deal with uncertainty. But to the extent that they are
available, such data provide a means for generating frequency
distributions of theoretical population levels. With less data
the dispersion will be greater -- an important consideration in
population management. In the case of the northern fur seal, for
which there is more data than most species, these distributions
clearly demonstrate that MNPL, K, pups born at MNPL and K, and
MNPL/K may occur over a wide range of population levels, and that
definitive estimates cannot be obtained without making
unwarranted assumptions regarding life table values and density-
dependent mechanisms.

Finally, it is suggested that these frequency distributions
can serve as first approximations of probability distributions
for these theoretical reference levels. As such, these
distributions suggest that it is highly likely that the current
population level (producing on the order of 200,000 pups) is well
below MNPL.

However, the question of how these distributions are used is
not entirely a scientific issue. Here, description of these
distributions has been limited to modes and ranges. For
management purposes, some other descriptor may be more important.
Based on the current statistical paradigm, the 95th percentile
may be considered a more conservative, useful value from these
distributions. In any case, these distributions reflect the

uncertainty with which the natural history of the northern fur
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seal is known, and they thereby provide a more realistic

scientific and management perspective.
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LIST OF FIGURES

Fig. 1. Number of northern fur seal pups born annually on St.
Paul Island, Alaska, from 1912 to 1990. Simulations (described
later in the text) were conducted to reproduce this time series,
filling in the large gap between 1925 and the late 1940s. Data
are from Briggs and Fowler (1984).

Fig. 2. A. Hypothetical maximum net recruitment of 3-year-old
northern fur seal females as a function of the number of pups
born. The vertical distance between the replacement and
recruitment lines corresponds to net recruitment. Maximum net
recruitment occurs where the slope of the recruitment line equals
the slope of the replacement line and is defined here in terms of
a specific portion of the population. B. MNPL as predicted by
the simple (nongeneralized) logistic model and as may occur
(hypothetically) for the northern fur seal. MNPL is defined here
in terms of the whole population. Maximum net recruitment of
3-year-old females and maximum net productivity of the whole
population do not necessarily occur at the same population level;
hence, the population producing the maximum net recruitment of
3-year-old females may be a biased indicator of MNPL.

Fig. 3. Estimates of male survival from birth to age 3 in Chapman
(1973) and Smith and Polacheck (1984), and from birth to age 2 in
Lander (1979) and Trites (1989). Note differences in ages for
which survival is evaluated and in the years for which data are
included.

Fig. 4. Stock-recruitment models from Table 1 used to fit
estimated recruitment of 3-year-o0ld females (Y-axes) to number of
pups born (X-axes). Data are adapted from Chapman (1973) and are
for the years 1920-22 and 1950-65. Except for the generalized
logistic (Richards 1959 and Allen 13976) models (middle and right
of bottom row, respectively) the fitted models are visually
similar. However, these models result in substantially different
estimates of MNPL (left triangles just above X-axes). Estimates
of K (right triangles) are much less variable.

Fig. 5. Variability in age-specific equilibrium survival rates
for female northern fur seals from the life tables of Lander
(1981), York and Hartley (1981), Smith and Polacheck (1981), and
Barlow and Boveng (1991).

Fig. 6. Density-dependent mechanisms used in numerical modeling
of northern fur seal population dynamics, including female
survival from birth to age 3 (Smith 1973 and Eberhardt 1981), on-
land pup survival (Swartzman 1984), and survival for the first 20
months at sea as a function of on-land survival (Lander 1979).
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Fig. 7. The annual cycle of northern fur seals as modeled in
these repetitive simulations.

Fig. 8. Realized maximum values and scope for density-dependent
change of life table parameters as determined by the input
parameters M,, M, and M, (from Smith and Polacheck 1984). See
Table 2 for biologically possible maximum values and equilibrium
values.

Fig. 9. Density dependence of vital parameters determined by the
general Allen (1976) function and used by Smith and Polacheck
(1984) . Each line is labeled with the Z value used to generate
that line.

Fig. 10. The five validation criteria used to accept or reject
simulations. The first criterion was the growth rate in the
interval 1912-24. If the growth rate was within acceptable
limits, the pups numbers passed between the two arrows on the
left. The second criterion was the lower limit (350,000) for the
maximum annual pup number in the interval 1940-55. The third
criterion was the annual growth rate in the interval 1945-55,
which had to decrease to less that 0.015 for at least 1 year.

The fourth criterion was the number of pups born annually in the
interval 1962-70, which must have dropped to less than 342,700
for at least 1 year. The final criterion rejected the simulation
on the basis of abnormal behavior, particularly growing
oscillations after 1970. Hollow circles are the pup numbers from
a simulation. Also shown (filled circles) are the pup estimates
for the interval 1962-70 from Briggs and Fowler (1984).

Fig. 11. Frequency distributions for five population measures
from simulations satisfying original validation criteria (n =
736,629) . Population measures include A) MNPL, B) pups born at
MNPL, C) MNPL/K, and D) K and pups born at K.

Fig. 12. Frequency distributions for five population measures (n
= 524,362), including A) MNPL, B) pups born at MNPL, C) MNPL/K,
and D) K and pups born at K. Growth rates limits for interval
1912-24 narrowed to 0.06 and 0.10. The dotted line corresponds
to results from Figure 11, with the original validation criteria
(where growth rate limits were 0.05 to 0.11).

Fig. 13. Frequency distributions for five population measures (n
= 347,208), including A) MNPL, B) pups born at MNPL, C) MNPL/K,
and D) K and pups born at K. Lower limit for maximum annual
number of pups born in the interval 1940-55 increased from the
initial level of 350,000 to 381,000. The dotted line corresponds
Lo results from Figure 11, with the original validation criteria.
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Fig. 14. Frequency distributions for five population measures (n
= 220,034), including A) MNPL, B) pups born at MNPL, C) MNPL/K,
and D) K and pups born at K. M, and M; parameters limited to six
values (0.0, 0.2, 0.4...1.0) rather than eleven (0.0, 0.1,
0.2...1.0). The dotted line corresponds to results from

Figure 11.

Fig. 15. Relative frequency distributions for five population
measures (n = 736,629), including A) MNPL, B) pups born at MNPL,
C) MNPL/K, and D) K and pups born at K. Distributions are
weighted by the error between observed annual pup production and
pups born in the model during the interval 1962-70. The dotted
line corresponds to results from Figure 11. To facilitate
comparison, all distributions are scaled to sum 1.0.

Fig. 16. Relative frequency distributions for five population
measures (n = 6279), including A) MNPL, B) pups born at MNPL, C)
MNPL/K, and D) K and pups born at K. Distributions are weighted
by the error between observed annual pup production and pups born
in the model during the interval 1962-70. Only simulations with
error in the lower 10% of the error range are included. The
dotted line corresponds to results from Figure 11, with the
original validation criteria. To facilitate comparison, all
distributions are scaled to sum 1.0.

Fig. 17. Comparison of age-specific survival values for northern
fur seal females as used in the repetitive simulations, including
equilibrium values from Barlow and Boveng (1991), adjusted
equilibrium values with slightly greater juvenile survival and
lower adult survival (modified arbitrarily but constrained to
result in equilibrium growth), and an adjusted schedule of
biologically possible maximum values (biologically possible
values limited to no more than 10% of corresponding equilibrium
values). The latter two survival schedules were used to test the
gensitivity of the repetitive simulation approach to a different
life table and to limited scope for density-dependent change,
respectively.

Fig. 18. Frequency distributions for five population measures (n
= 1,697,491), including A) MNPL, B) pups born at MNPL, C) MNPL/K,
and D) K and pups born at K. Results generated using an adjusted
equilibrium survival schedule for females (see Fig. 17). The
dotted line corresponds to results from Figure 11, with the
equilibrium survival schedule from Barlow and Boveng (1991).
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Fig. 19. Frequency distributions for five population measures (n
= 1,026,284), including A) MNPL, B) pups born at MNPL, C) MNPL/K,
and D) K and pups born at K. Results generated by limiting the
scope for density-dependent change in adult survival to no-
greater than 10% of the equilibrium value (see Fig. 17). The
dotted line corresponds to results from Figure 11, where a
biologically possible maximum value of 1.0 was used for all adult
female survival rates.

Fig. 20. Frequency distributions for values of M,, M, and M
recorded from successful simulations (n = 736,629).

Fig. 21. Frequency distributions of MNPL/K as determined by
degree of nonlinearity (Z,, Z, or Z) and scope for density-
dependent change (M,, M;, or M) in the functions regulating adult
female survival, fecundity, and juvenile survival, respectively.
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Fig. 2. A. Hypothetical maximum net recruitment of 3-year-old
northern fur seal females as a function of the number of pups
born. The vertical distance between the replacement and
recruitment lines corresponds to net recruitment. Maximum net
recruitment occurs where the slope of the recruitment line equals
the slope of the replacement line and is defined here in terms of
a specific portion of the population. B. MNPL as predicted by
the simple (nongeneralized) logistic model and as may occur
(hypothetically) for the northern fur seal. MNPL is defined here
in terms of the whole population. Maximum net recruitment of
3-year-old females and maximum net productivity of the whole
population do not necessarily occur at the same population level;
hence, the population producing the maximum net recruitment of
3-year-old females may be a biased indicator of MNPL.
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Lander (1979) and Trites (1989).

included.
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Fig. 4. Stock-recruitment models from Table 1 used to fit
estimated recruitment of 3-year-old females (Y-axes) to number of
pups born (X-axes). Data are adapted from Chapman (1973) and are
for the years 1920-22 and 1950-65. Except for the generalized
logistic (Richards 1959 and Allen 1976) models (middle and right
of bottom row, respectively) the fitted models are visually
similar. However, these models result in substantially different
estimates of MNPL (left triangles just above X-axes). Estimates
of K (right triangles) are much less variable.
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Fig. 5. Variability in age-specif.c equilibrium survival rates
for female northern fur seals from the life tables of Lander

(1981), York and Hartley (1981), Smith and Polacheck (1981), and
Barlow and Boveng (1991).
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Fig. 7. The annual cycle of northern fur seals as modeled in
these repetitive simulations.
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values.
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Fig. 9. Density dependence of vital parameters determined by the
general Allen (1976) function and used by Smith and Polacheck
(1984). Each line is labeled with the Z value used to generate
that line.
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Fig. 10. The five validation criteria used to accept or reject
simulations. The first criterion was the growth rate in the
interval 1912-24. If the growth rate was within acceptable
limits, the pups numbers passed between the two arrows on the
left. The second criterion was the lower limit (350,000) for the
maximum annual pup number in the interval 1940-55. The third
criterion was the annual growth rate in the interval 1945-55,
which had to decrease to less that 0.015 for at least 1 year.

The fourth criterion was the number of pups born annually in the
interval 1962-70, which must have dropped to less than 342,700
for at least 1 year. The final criterion rejected the simulation
on the basis of abnormal behavior,. particularly growing
oscillations after 1970. Hollow circles are the pup numbers from
a simulation. Also shown (filled circles) are the pup estimates
for the interval 1962-70 from Briggs and Fowler (1984).
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Fig. 11. Frequency distributions for five population measures
from simulations satisfying original validation criteria (n =
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Fig. 13. Frequency distributions for five population measures (n
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= 220,034), including A) MNPL, B) pups born at MNPL, C) MNPL/K,
and D) K and pups born at K. M, and M, parameters limited to six
values (0.0, 0.2, 0.4...1.0) rather than eleven (0.0, 0.1,

0.2...1.0). The dotted line corresponds to results from
Figure 11.



60

[
o
= -
E A B
»n
3 i
H i -
. 1
] I
A E
= ittt
° ; 3 i5| | 'lh
g ; : :“I I.‘:
. v |I |
= (L A
H Al ,..n!“H,_i A
;.' 05 06 07 08 09 1.0 1.1 12 13 1.4 1.8 150 180 210 240 270 300 330
« Population at MNPL (miilions) Pups Born at MNPL (thousands)
[ ]
[
o
E =
2
E C D
n
3 |
H !
[ ] v g
[ ] i
3] il |
3 |
=3
2 - i
8 J |1
@ .
a : . |
£ ; ! |
3 ; : !
: "I\ | | |
é #“[l l'||r‘ {52 1 1 ll | - | - _I L == T
_: 30 40 50 60 70 a0 90 1.31 143 155 1.67 179 191 208
& MNPL/K (%) Population at K (millions)

320 350 380 410 440 470 500

Pups Born at K (thousands)

Fig. 15. Relative frequency distributions for five population
measures (n = 736,629), including A) MNPL, B) pups born at MNPL,
C) MNPL/K, and D) K and pups born at K. Distributions are
weighted by the error between observed annual pup production and
pups born in the model during the interval 1962-70. The dotted
line corresponds to results from Figure 11. To facilitate
comparison, all distributions are scaled to sum 1.0.



61

Relative Number of Succeesful Simulation

08 08 07 06 09 1.0 1.1 12 13 14 16 150 180 210 240 270 300 330
Population at MNPL (miillons) Pups Born at MNPL (thousands)
C D

_l ) “llh - [ ! | . ;
a0 40 50 60 70 80 90 131 1.43 156 1.67 179 191 203
MNPL/K () Population at K (millions)

Relatlve Number of Successful Simulations

320 350 380 410 440 470 500

Pups Born at K (thousands)
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original validation criteria. To facilitate comparison, all
distributions are scaled to sum 1.0.
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Fig. 17. Comparison of age-specific survival values for northern
fur seal females as used in the repetitive simulations, including
equilibrium values from Barlow and Boveng (1991), adjusted
equilibrium values with slightly greater juvenile survival and
lower adult survival (modified arbitrarily but constrained to
result in equilibrium growth), and an adjusted schedule of
biological.y cossible maximum values (biologically possible
values limited to no more than 10% of corresponding equilibrium
values). The latter two survival schedules were used to test the
sensitivity of the repetitive simulation approach to a different

life table and to limited scope for density-dependent change,
respectively.
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Fig. 18. Frequency distributions for five population measures (n
= 1,697,491), including A) MNPL, B) pups born at MNPL, C) MNPL/K,
and D) K and pups born at K. Results generated using an adjusted
equilibrium survival schedule for females (see Fig. 17). The
dotted line corresponds to results from Figure 11, with the
equilibrium survival schedule from Barlow and Boveng (1991).
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